Osteosarcoma is a heterogeneous tumor intimately linked to its microenvironment, which promotes its growth and spread. It is generally accompanied by cancer-induced bone pain (CIBP), whose main component is neuropathic pain. The TRPA1 ion channel plays a key role in metastasis and is increasingly expressed in bone cancer. Here, a novel TRPA1 inhibitor is described and tested together with two other known TRPA1 antagonists. The novel lipoyl derivative has been successfully assessed for its ability to reduce human osteosarcoma MG-63 cell viability, motility, and gene expression of the CIBP pro-inflammatory cytokines interleukin 6 (IL-6) and tumor necrosis factor α (TNF-α). A putative three-dimensional (3D) model of the inhibitor covalently bound to TRPA1 is also proposed. The in vitro data suggest that the novel inhibitor described here may be highly interesting and stimulating for new strategies to treat osteosarcomas.
- Membership
- Publications
- Resources
- Education
- Events
- Outreach
- Global Year
- Pain Management, Research and Education in Low- and Middle-Income Settings
- Sex and Gender Disparities in Pain
- Integrative Pain Care
- Translating Pain Knowledge to Practice
- Back Pain
- Prevention of Pain
- Pain in the Most Vulnerable
- Pain Education
- Joint Pain
- Pain After Surgery
- Global Year Campaign Archives
- My Letter to Pain
- IASP Statements
- ICD-11 Pain Classification
- Global Alliance of Partners for Pain Advocacy (GAPPA)
- National, Regional, and Global Pain Initiatives
- International Pain Summit
- Pain Awareness Month
- Global Year
- Careers
- About
- For Pain Patients and Professionals